Australian Drought Monitor

Christa Pudmenzky
Centre for Applied Climate Sciences
University of Southern Queensland, Toowoomba, Queensland, Australia
christa.pudmenzky@usq.edu.au

IDMP - Virtual Exchange on Annual Meeting Preparation
15 September 2021
WHAT ARE THE 5 TYPES OF DROUGHT?

METEOROLOGICAL
drought refers to an extended period of dry weather patterns.

HYDROLOGICAL
drought refers to low water supply in our rivers, lakes, aquifers, and other reservoirs that often follows meteorological drought.

AGRICULTURAL
drought occurs when a water shortage significantly damages or destroys agricultural crops.

ECOLOGICAL
drought is the most recently defined type of drought and refers to widespread ecological damage caused by the lack of soil moisture.

SOCIOECONOMIC
drought refers to when a water shortage affects the supply and demand of drought commodities, such as water, food grains, and fish.

Nevada Division of Water Resources
Brief overview of the Australian Drought Monitor

• The Drought Monitor is modelled on the *U.S. Drought Monitor (USDM)* at the National Drought Mitigation Center at the University of Nebraska-Lincoln in the late 1990s.
• The *Combined Drought Indicator (CDI)* is a scaled down version which was also developed at NDMC.
• The CDI concept is widely used in Europe, Africa, Asia and other countries.
• **Advantage** of the CDI: only a few variables are required to calculate a CDI that monitors agricultural-related drought conditions.
• The *Australian Drought Monitor* is completely objective and does not include any human adjustments from ground observations prior to publication.
The CDI is based on the combination of four different indices:

- Standard Precipitation Index (SPI)
- Evapotranspiration (ET)
- Soil Moisture (SM 0 – 1.0 m)
- Normalized Difference Vegetation Index (NDVI)

The CDI calculation methodology combines the four data sets as given in the equation below:

\[
CDI = a \times SPI + b \times SM + c \times ET + d \times NDVI
\]

where a, b, c and d are respective weights assigned to each of the input data.

The indices are calculated on a monthly basis for each grid cell (5 km x 5 km) over Australia.
Using the Australian Combined Drought Indicator (CDI)

- The CDI is calculated as a percentile value, which is then converted into eleven categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentile</th>
<th>Approximate frequency of drought</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceptional Wet</td>
<td>98% to 100%</td>
<td></td>
</tr>
<tr>
<td>Extreme Wet</td>
<td>95% to 98%</td>
<td></td>
</tr>
<tr>
<td>Severe Wet</td>
<td>90% to 95%</td>
<td></td>
</tr>
<tr>
<td>Moderate Wet</td>
<td>80% to 90%</td>
<td></td>
</tr>
<tr>
<td>Slightly Wet</td>
<td>70% to 80%</td>
<td></td>
</tr>
<tr>
<td>Near Normal</td>
<td>30% to 70%</td>
<td></td>
</tr>
<tr>
<td>Slightly Dry</td>
<td>20% to 30%</td>
<td>1 in 3 years</td>
</tr>
<tr>
<td>Moderate Drought</td>
<td>10% to 20%</td>
<td>1 in 5 years</td>
</tr>
<tr>
<td>Severe Drought</td>
<td>5% to 10%</td>
<td>1 in 10 years</td>
</tr>
<tr>
<td>Extreme Drought</td>
<td>2% to 5%</td>
<td>1 in 20 years</td>
</tr>
<tr>
<td>Exceptional Drought</td>
<td>0% to 2%</td>
<td>1 in 50 years</td>
</tr>
</tbody>
</table>
each 5 km x 5 km grid cell has a different weight
The CDI has been calculated back to April 1998 when the Copernicus Global Land Service (Sentinel-3 satellite) vegetation data became available. This is a hindcast of more than 23 years.

Droughts originate from a deficiency of precipitation leading to water shortages. The impacts are dependent on location, soil and vegetation types, intended use of water, storage capacity, time of year, duration and severity of the water deficit.

To determine if a region is either going into drought, continues to be in drought or is coming out of drought it is recommended to view the CDI drought maps using different time scales (1, 3, 6, 9, 12, 24 or 36 months).

Possible impacts of the different lengths of drought periods are available on the NACP website: https://nacp.org.au/drought_monitor
Validation of the Combined Drought Indicator
August 2021 – 12 months

Pasture Growth Percentile
Relative to Historical Records from 1957
September 2020 to August 2021

www.LongPaddock.qld.gov.au
The Australian Drought Monitor reached a major milestone

- Minister for Agricultural Industry Development and Fisheries - Mark Furner
 Press Release Saturday, 29 May 2021

Direct Application: Local Drought Committees (LDCs) uses the 12, 24 and 36 month CDI in the assessment of the drought status Queensland.
Validation of the CDI

• The Drought Monitor relies on field observations from extension officers, Climate Mates and other local experts to provide feedback to validate observational data and corresponding indices.

• **SurveyMonkey** is being used to collect drought-related condition and impact information from ‘people on the ground’ to produce a **Drought Condition & Impact Report**.

• If you would like to be part of the validation process please contact me on: christa.Pudmenzky@usq.edu.au
How dry or wet is it in your area?

last 3 months
Australian Combined Drought Indicator
August 2021

last 12 months
Australian Combined Drought Indicator
August 2021
The development of the Australian Drought Monitor provides producers and growers with the ability to manage the effects of climate and weather variability and incorporate the information into their decision making, planning and reporting.

The Australian Drought Monitor is a web-based tool that provides users with access to spatial information on the current status of drought.
Thank you
Each dataset is percentile ranked over a baseline period and the results combined using a weighted average. Principal Component Analysis (PCA) is used to determine the optimal weighting for the CDI for each grid cell for every month over Australia.