Benefits of Water Institutional Reforms in Reducing Murray-Darling Drought Cost

Professor Jeffery Connor Centre for Sustainability Governance University of South Australia, School of Commerce

Presentation at the World Bank Expert Workshop

Drought Mitigation & Preparedness: Benefits of Action & Costs of Inaction,

Washington, DC 26-27 April 2017

COUNTRY	RIVER	RATIO MAXIM UM over MINIM UM ANNUA L FLOW
BRAZIL	AMAZON	1.3
SWITZER LAND	RHINE	1.9
CHINA	YANGTZE	2.0
SUDAN	WHITE NILE	2.4
USA	POTOMAC	3.9
SOUTH AFRICA	ORANGE	16.9
AUSTRAL IA	MURRAY	15.5
AUSTRAL IA	HUNTER	54.3
AUSTRAL IA	DARLING	4705.2

Australia faces highly variable water supply & severe drought

Murray-Darling Basin Inflows

Historic infrastructure & institutional drought response

Federation Drought 1895-1902:

- Cooperative States agreement to ensure navigable river
- major storages and weirs

Mid-century Drought 1938-45:

 Inter-basin transfer/hydropower

1980's-90's water institution developments – response to growing allocation

- salinity threatened end of system urban water supply
- Low flow Environmental threat to River Murray Delta

Yearly (July to June) averages based on daily values

Key context: Keating era micro-economic reforms in many sectors (e.g. floating currency)

"National Water Initiative (NWI) 1994

- Capped diversions at 1993/4 levels
- Individual water property rights
 - Volumetric & metered
 - Automatically adjusted "allocation" in scarce supply (shares of storage)
 - Tradable Independent of land
- Deliver critical human water & required conveyance first (municipal, industrial + stock)
- Aspiration for cost reflective and full cost pricing in infrastructure investment
- Incentive payments for State to comply

(Connor and Kaczan, 2013)

NWI proactive water planning reduced cost in the "Millennium Drought"

Worst drought in recorded history led to empty storages and emergency planning In 2007

water trade provided irrigators an adaptation mechanism

1/3 of all irrigation traded at height of drought 2008/9

improved farm income in drought by \$0.5-1 billion (10-20%)

Water traded from low value annual to high value perennial irrigation

allowed
 sustaining high
 value perennials

- provided higher income to annual crop farmers than irrigation would have

Co-benefit: introduction of tradable water rights drove irrigation efficiency improvement

Lessons from Australian water trade

Great benefit in drought

-Flexible dynamic reallocation from low to high value

-Equity advantage over water pricing – loser's are compensated

Challenges: -Establishing necessary preconditions -losses of return flow, activation of unused water =instream flow changes -Speculation, exploitation -Facilitating learning

Conditions enabling water trade

Water property right:

- -metered, volumetric, independent of land
- -defined as share of available water
- -Penalties for over-withdraw (enforcement);
- -Banking style use and trade registry system;
- -Ebay style (instantaneous, low cost) trading platform;
- -Quick transfer, pre-approved conditions on trade

Other cost reducing institutional reforms

- 1. Individual (as opposed to system level) carry-over (2006)
- 400 GL of 1600GL total allocation carried over in 2009
- Estimated value ≈ 10% irrigation return increase
- 2. MDB salinity credit trading (2001):
 - "capped" salinity contributions by each state;
 salt "debit" accounting system
 - •Offset "debits" with agreed "credit" actions
 - •Efficient results
 - •states built "salt interception" in other states where cost effective
 - •lower cost non-infrastructure measure:
 - •"salinity impact" zone irrigation charges encouraged irrigation at low salinity impact locations

Unresolved issues - Environment (residual water claimant) suffered with high ecosystem service cost

Unresolved issues – contingencies for even worse drought not yet premeditated

- 2006-7 was worse than "worst case" planning scenario previously thought to be conservative:
 - Near zero irrigation water
 - Dilution flow to maintain end of system salinity target unmet
 - Wetlands cut-off and dried out to reduce evaporation, maintain minimum municipal industrial supply conveyance
 - Very close to not meeting critical human water needs
- Worse drought is very possible with climate change
 - a number of measure have been taken (new desal plants, some environmental water reallocation)
 - But not yet formal risk assessment based contingency planning

Unresolved issues – inefficient high cost infrastructure investments

Irrigation – Massive public infrastructure investments to save water (≈\$200k to every MDB irrigated farm):

- Mostly in "legacy" projects with inefficiencies
- Crowds out private transformation (with efficiencies from: flexible delivery timing, scale economies)
- locks water into areas of low return, prevents new entry efficient resource use
- for rural income support objectives other (employment diversificiaton) investments are superior

Urban water supply – Massive public infrastructure investments for drought proof water supply across Australian major cities during drought

- Mostly desalinisation –
- Little risk based economic evaluation with additional options & contingencies to identifying lower cost, higher reliability, and
- Little consideration of ecosystem impacts in urban water options analysis (Kandulu et al., 2014)

Unresolved issue – future "legacy" and ES cost of adaptations mostly poorly understood & accounted for

Little studied costs

- Future vulnerability costs of drought groundwater substitution (Hornbeck and keskin, 2014)
- Lost future productivity, ecosystem services from:
 - short term water salinity (Connor et al., 2012)
 - long term soil salisation, acidification drought impacts

Little studied adaptations:

- Carbon, water, energy nexus & trade-offs in future
- And strategic policy with climate change growing food and water demand (Connor et al, 2016)

Referenced work

Connor, J.D., B.A. Bryan and M. Nolan (2016) Competition for water: managing water impacts of forest carbon sequestration incentive policy with water markets under global change. Environmental Science & Policy. 66:11-22.

Connor, J.D., J. Kandulu and R. Bark (2014) Irrigation Revenue Loss in Murray-Darling Basin Drought: An Econometric Assessment. Agricultural Water Management. 145:163-170

Kirby, J.M., R. Bark, J.D. Connor, M.E. Qureshi and S. Keyworth (2014) Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought? Agricultural Water Management. 145:154-162.

Kandulu, J.M., J.D. Connor, D.H. Hatton MacDonald and Crossman, N. (2014) Ecosystem Services in Urban Water Investment. Journal of Environmental Management. 145:43-53.

Connor, J.D., K.A. Schwabe, D. King and K. Knapp, (2012) Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation. Ecological Economics. 77:149-157.

Bannerjee, O, R. Bark, J.D. Connor and N. Crossman (2013) An ecosystem services approach to estimating economic losses associated with drought. Ecological Economics. 91:19–27.

Hornbeck, R. and P. Keskin (2014). "The historically evolving impact of the ogallala aquifer: Agricultural adaptation to groundwater and drought." <u>American Economic Journal: Applied Economics</u> 6(1): 190-219

Connor, J.D. and D. Kaczan (2013) Principles for Economically Efficient and Environmentally Sustainable Water Markets: The Australian Experience. Chapter 19 in editors Schwabe, K. J. Albiac, J.D. Connor, R. Hassan, L. Meza-Gonzalez. Drought in Arid and Semi-Arid Environments: A Multi-Disciplinary and Cross-Country Perspective. Springer. 2013.

