Vulnerability and Adaptation to Drought: Economic Impact Scenarios*

Satya Priya, PhD Senior Water Resources Mgt. Specialist Water GP, SAR

April 26, 2017

For Drought Mitigation and Preparedness Workshop, Washington DC

*https://openknowledge.worldbank.org/handle/10986/11703

Objectives – Outline of the Presentation

- Drought and Economy Perspective: AP Case Study
- Methodological Framework
- Analyzing Vulnerability to Drought
- Economic Impact of Drought
- Conclusions

Case Study : Erstwhile Andhra Pradesh

- Telangana (9 districts)
 - Three districts (Rangareddi; M'nagar and Nalgonda)
- Andhra Pradesh (13 districts)
 - Four districts in Rayalaseema region (Anantpur; Chittoor, Cuddapah and Kurnool)
- Study Scope (8/23 districts)
- Rain shadow districts
 - Groundwater based economy
 - Home to 35% (30M) of total population
 - Majority (70%) is dependent on agriculture

Drought and Economic Perspective

Rainfall and economic performance in Andhra Pradesh

WORLD BANK GROUP

2002 Drought Effect on Agriculture

• 2002 drought on agriculture and its contribution to GSDP

Total contribution of 21.02% in Gross State Domestic Product

Total contribution of 15.34% in Gross State Domestic Product

- Develop a framework for simulating long-term impacts of drought in drought-prone areas and at state levels;
- Conduct risk assessments of the impacts under different scenarios; and
- Assist the GoAP in development of a strategy for adapting to drought and water deficits

- Outputs (EP curve, average annual, return period)
 - Direct losses
 - Agriculture production, value
 - Economic losses
 - GVA, GDP
 - Fiscal losses
 - Revenue, expenditure
 - Drought maps
 - Hazard based on index
 - Risk based on yield/production loss
- Deliverables
 - Report/Publication

Probabilistic Drought Risk Assessment Model

Hazard and Vulnerability Module

- Mandal/Block level rainfall data used
- Generated stochastic rainfall events
- To identify drought events
- Vulnerability : EPIC* simulated yield
 - Generated at block level; averaged for district
 - Management inputs taken from ANGRAU
- Observed/reported yield
 - Comparison between simulated & reported
 - For example:
 - » 1997, 2002 drought years
 - » 1996, 1998 normal years
 - » Anantapur and Mahboobnagar

WORLD BANK GROUP

*EPIC: Crop Growth Simulation Model

Hazard: Simulation of Drought Events

Seasonal Normal Rainfall

Anantapur District EP (Historical Vs. Modeled)

Validation of SPI for Anantapur

_			-	-	
District	Minor	Moderate	Severe	Extreme	Any
Anantapur	6.1	7.8	41.7		3.2
Prakasam	6.8	8.9	29.4		3.4
Rangareddy	7.5	7.7	35.7	500.0	3.4
Nalgonda	7.4	6.8	41.7		3.3
Chittoor	6.5	9.6	38.5	500.0	3.5
Cuddapah	6.3	9.1	35.7	250.0	3.3
Kumool	6.8	7.9	38.5	500.0	3.3
Mahabubnagar	6.8	7.5	41.7	500.0	3.3
8 districts	6.8	8.2	38.5		3.3

 Standardized Precipitation Index (SPI) is one of the means used fc defining and monitoring drought.

- Its an index based on the probability of precipitation for any time scale.
- It determines the rarity and severity of a drought at a given time scale
- Advantages: developed for any regions/temporal/spatial

Simulated Return Periods (in Years); however, it defers at block level

WORLD BANK GROUP Note: Model simulations based on historical data.

Review of near real time Drought scenario

The average yield and planting area (resolution: block/mandal level)

 \checkmark each of the simulated events

- The average yield of five crops (JO, MA, GN, SU, and RI)
 ✓ For category of drought is determined with the help of EPIC model.
- EPIC runs are made at block/mandal level for

✓ selected events (10 numbers) representing different categories of drought.

The events are selected from the 500-year event set
 ✓ for every block to represent each of the drought categories
 ✓ based on a representative SPI value.

Exposure: Computation of yields and production at district level

Planting Area Model:

- GCA, GIA, GrfA versus current year monsoon strike date
- Change in GCA, GIA, and GrfA over previous year with change in rainfall over previous year.

Exposure and Vulnerability Module (2)

Impact of Severe Drought on Yield (% Decrease with Respect to Normal Yield) RMSI 😂 RMSI 🧐 a world of solution livering a world of solution Impact of Severe Drought on Yiel NORMAL YEAR AVG YIELD MAIZE (Reduction w.r.t normal) **MAIZE (Tonnes per hectare)** Less than 0.5 Less than 5% 0.5 to 1.0 5% to 10% 1.0 to 2.0 10% to 30% 2.0 to 3.0 30% to 50% 3.0 to 4.0 50% to 70% 4.0 to 5.0 5.0 to 6.0 **70% to 90%** Greater than 6.0 90% to 100% Crop Not Grow n all others

Production associated with the categories of drought at the block, district and combined levels.

- Production is computed for each of the 500 events at the block-level as
 - Production=Planted area x Average yield.
 - Block-level production is then summed up
 - Events categorized as normal year in the 500-year event set at the corresponding (district or state) level.
- % loss in production for each event and crop is then calculated as:
 - % Loss in Production=100 x (Average Normal Year Production – Production for the event) / Average Normal Year Production

	Ananthapur	Mahbubragar	Kumool	Cuddapah	Chittoor	Prakasam	Rangareddy	Nalgonda
Normal	-	_		-				-
(MT/Ha)	2.87	2.15	2.59	2.73	2.86	3.10	237	2.69
Yield losse	s in drought ye:	ars (% normal yi	elds)					
Minor	14%	10%	13%	11%	10%	10%	19%	8%
Moderate	27%	19%	32%	21%	18%	19%	24%	16%
Severe	45%	26%	62%	31%	35%	33%	31%	29%

Rice Yields in Normal Years and Yield Losses in Drought Years

- Loss of VOP of the eight drought-prone districts is defined as
 - the difference between the VOP of the five crops during a normal year and the VOP during a drought year.
 - the eight districts faced a loss in VOP due to drought every 2 to 3 years (2.5 years on average).
- The VOP loss is as high as over 15% once every 10 years on average and exceeds 25% once every 25 years

- The AAL of output due to exposure to drought
 - 5% (signifcant loss) assuming no changes in the current cropping pattern.
 - The AAL 6 % in the worst affected Anantapur, followed by Mahabubnagar, and others
- There were further variations within districts, and across blocks.
- For small and marginal farmers, even a 10% or 5% decrease in output could mean falling below the poverty line.

Average Annual Loss of Value of Production Output, by District

Reducing Cultivable Rice Area in Anantapur: VoP Loss Exceedance Probability Curve

- Case 0 a typical "real-life" situation during the years of normal rainfall or minor drought.
- Case 1 single irrigation of rain-fed crops at the flowering stage or its equivalent
- Case 2 first irrigation as above plus second irrigation at the time of yield (grain formation).

Reducing Cultivable Rice Area in Anantapur: VoP Loss Exceedance Probability Curve

- The AAL gain was estimated at 32% under the single irrigation (Case 1)
- AAL gain was 47% under the double irrigation (Case 2)
- Partially reallocating water from rice cultivation to life-saving irrigation to less water-intensive crops would *reduce by half the AAL* during the drought years
- Thus *increase the all-year average annual crop production value* by one-third for single irrigation and by almost half for double irrigation.

Economic Assessment: Structure of AP Economy

- Structure defined
 - in terms of gross value added (GVA)
 - in various sectors and
 - Interrelations among them
- Primary sector
 - Agriculture, livestock, forestry, fishing, mining
- Secondary sector
 - Manufacturing, electricity, water supply, construction
- Tertiary sector
 - Trade, real estate, railways, communication, banking, public admin, transport, other services

WORLD BANK GROUP

Sector-wise Gross Value Added (GVA) Time Series, 1980–2003, 1993–94 Constant Prices

Economic Assessment: Background Data

Method: Seemingly unrelated regression (SUR)

Macro Model: Specification

- Model preliminary specification
 - $\ln PGVA_t = 11.45 + 0.40 \ln PCFC_t + 0.72 \ln YIELD_t$ (R² = 0.97)
 - $\ln \text{SGVA}_{t} = 0.71 \ln \text{SCFC}_{t} + 0.37 \ln \text{AGVA}_{t-1}$ (R² = 0.84)
 - $\ln \text{TGVA}_{t} = 1.33 \ln \text{TCFC}_{t} 0.12 \ln \text{AGVA}_{t-1}$ (R² = 0.98)
 - » 'en' means natural logarithm
 - PGVA_t, SGVA_t and TGVA_t mean primary, secondary and tertiary sectors' gross value added(GVA), in
 - year t, respectively
 - » AGVA_{t-1} means last year's agricultural GVA
 - PCFC_t, SCFC_t and TCFC_t mean the consumption of fixed capital(CFC), in year t, in the primary,
 - secondary and tertiary sectors, respectively.
 - YIELD_t is the agricultural yield in year t

Sectoral GVA contributions

Economic Assessment: Input-Output Model

- All India I-O table available for 1998-99
- AP I-O table prepared from the all India table
- AP I-O table aggregated from 115 sectors to 19 sectors
- The Final Demand considered (PFCE,Exp/Imp)
- Output multipliers estimated
- Employment coefficients estimated

Employment Multiplier

- Employment coefficients
 - Provides the number of workers required to produce Rs.1 lakh value of output
 - For example, to produce Rs. 1 lakh value of agricultural output 7.3 workers are required
- Employment coefficients will be used to calculate employment multipliers
 - It measures the total change in employment in the economy for a unit change in employment in a particular sector.

Commodity	Employment Coefficients
Agriculture	7.31
L&F&L	0.28
M & Q	0.47
Food Products	1.00
MAN (1)	2.59
MAN (2)	0.14
Construction	0.86
EGW	0.08
Railway transport services	0.32
Ser(1)	0.99
B&I	0.15
SER (2)	0.85

Economic Impact of Drought at the State Level

• Assessment of Direct and Indirect Loss Potentials: Benchmark Case

Sector-wise Gross Value Added (GVA) Time Series, 1980–2003, 1993–94 Constant Prices

Average Annual Loss as % of Gross Value Added due to Droughts

- The AAL in GVA for the overall state economy is estimated at a very modest 0.2%, jumping to over 1% for the agriculture sector.
- The largest average damage appears to be caused by moderate droughts, which contribute almost 50% to the AAL in the agricultural sector

WORLD BANK GROUP

Sector-wise Gross Value Added (GVA) Time Series, 1980–2003, 1993–94 Constant Prices

- In a minor drought, average loss is estimated
 - > 3% of agriculture GVA
 - < 1% of livestock GVA.
- In moderate drought:
 - ~ 4% of agriculture GVA
 - ~ 1% of total GVA.
- During severe drought,
 - 8% in the agricultural sector
 - 2% for the whole economy;

WORLD BANK GROUP

• Tertiary sector, however, showed a gain of 2%

Economic Losses, in Sectoral GVA, Caused by Droughts - EP Curve

- A moderate drought event (occurring 1-in-10 years) cause:
 - 4% GVA loss in the agricultural sector,
 - 1.5% GVA loss in the secondary sector, and
 - 1% GVA loss in the livestock sector.
- During severe drought,
 - increase to 7% for the agriculture sector,
 - 3% for the secondary sector, and
 - 2% for the livestock sector.
- Per GVA analysis shown
 - secondary sector is more exposed to drought due to its inter-dependence on the agriculture sector than the livestock sector

Simulating the Impact of Structural Changes in the AP Economy (1)

- Resilience to drought is examined through scenarios in the macro-econometric model
 - The baseline Case 0 scenario represents the current economic structure (in terms of GVA).
 - Alternative scenarios, Cases 1 and 2, assume that the share of the agricultural sector decreases,
- The share of the tertiary sector increases significantly

WORLD BANK GROUP

* Scenario	Agriculture	Livestock	Others	Primary	Secondary	Tertiary
Case 0	1 4%	6%	6%	26%	25%	sector 49%
Case 1	7%	6%	6%	19%	21%	60%
Case 2	4%	6%	6%	16%	17%	6/%

Sector-wise Gross Value Added (GVA) Time Series, 1980–2003, 1993–94 Constant Prices

- The maximum possible impact due to a major drought is
 - below 1% of total GVA in Case 1 and
 - well below 0.5 % in Case 2
- The macro-economic impact of drought events
 - is limited at the state level
 - in terms of loss in the total GVA

WORLD BANK GROUP

Sector-wise Gross Value Added (GVA) Time Series, 1980–2003, 1993–94 Constant Prices

- Human and social costs
 - ✓ Remain devastating for millions of people
 - ✓ Effect at the farm level is significant
 - ✓ For small and marginal a loss in output value of 5-10%, fall below the poverty line
- Location differences
 - ✓ Vary greatly across locations and crops on drought severity
 - ✓ Different crops can be particularly vulnerable in different districts
 - ✓New approaches are needed to adapt to frequent droughts

Key Findings

- Impact on agriculture sector
 - Livelihood, income and employment are directly affected
 - Employment loss for 2002–03 in the agricultural VOP is estimated > 44 lakhs (4.4 Million people).
 - Moderating loss of employment remains a key challenge
- Impact on Households
 - HH losses to drought are varied; tailored assistance would be needed.
- Macroeconomic impact

WORLD BANK GROUP

- Less impact in AP due economy shifts from Ag to other sectors
- Increased GVA from Manufacturing (secondary) and Service (tertiary) sectors
- Shift to manufacturing and service could be a powerful drought mitigation strategies

Methodology development

 ✓ developed a robust analytical framework for simulating the longterm impacts of drought at the micro [drought-prone areas] and macro [state] levels);

• Findings and observations for analysis

✓ conducted a quantitative probabilistic risk assessment of the impacts under different scenarios; and

How does EA framework help to proactive drought action

✓ Assisted the GoAP in the development of a futuristic and anticipatory strategy for adapting to frequent drought events and conditions of water deficit

Thanks!

Contact: Satya Priya, PhD Sr. Water Res. Mgt. Specialist The World Bank 18-20, K G Marg, New Delhi spriya1@worldbank.org

Crop Yield Changes under Climate Change Scenarios: Results

• Climate Change Scenario 1:

- Maximum temperature increases by 2°C
- Minimum temperature increases by 4°C
- Annual rainy days decrease by 5 percentage points
- Atmospheric carbon-dioxide at 550 ppm

• Climate Change Scenario 2:

- Maximum temperature increases by 2°C
- Minimum temperature increases by 4°C
- Annual rainy days decrease by 5 percentage points
- Cumulative June–September (monsoon) rainfall decrease by 10 percentage points
- Atmospheric carbon-dioxide at 550 ppm

		Average crop yield change with respect to baseline		
Crops	Baseline scenario	CCS1	CCS2	
Rice	2.59 t/ha	-9%	-8%	
Groundnut	0.97 t/ha	2%	0%	
Jowar (Sorghum)	0.87 t/ha	3%	0%	
Sunflower	0.51 t/ha	10%	9%	
Maize	2.10 t/ha	3%	0%	