Remote Monitoring of Plant Drought Stress with the Apparent Heat Capacity

MATTEO ZAMPIERI^{1,2,3*}, MATTEO PICCARDO³, MARCO GIRARDELLO⁴, GUIDO CHECCHERINI³, IBRAHIM HOTEIT¹ AND ALESSANDRO CESCATTI⁵

*matteo.zampieri@ext.ec.europa.eu, matteo.zampieri@kaust.edu.sa

- 1 Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- 2 Climate Change Center, National Center for Meteorology, Jeddah, Saudi Arabia
- 3 Consultant of the European Commission, Joint Research Centre (JRC), Ispra, Italy
- 4 Department of Geography, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- 5 European Commission, Joint Research Centre (JRC), Ispra, Italy

BASIC IDEA OF THE NEW DROUGHT INDICATOR

Thermal Heat Capacity ≡ amount of heat required to raise the temperature of a body by 1 degree

$$c = \frac{\int R_n}{\Delta T}$$

closed system

(only energy exchange, no matter exchange)

DAYTIME SURFACE WARMING LONGWAVE

RADIATION

The apparent heat capacity measured from satellite depends on vegetation drought stress

Wetter

Higher Cooling Efficiency

CEFI Cooling Efficiency Factor Index

2005-2022 average

Correlations with monthly NDVI anomalies

S=Stress Factor

EF=Evaporative Fraction (ET/ET0)

Geostationary satellite estimates T_s and R_n every 15 minutes

Surface Temperature Equation

$$\Delta T_s = \frac{1}{c_s} \int (R_n - SH - LH - GH) dt$$

Apparent Heat Capacity

Cooling Efficiency

Surface Heat Capacity

DAILY SURFACE WARMING AFTER SUNRISE

$$c_s = c_a - e_c,$$

$$c_a = \frac{\int R_n dt}{\Delta T_S},$$

$$c_S = c_a - e_c$$
, $c_a = rac{\int R_n dt}{\Delta T_S}$, $e_c = rac{\int (SH + LH + GH) dt}{\Delta T_S}$

Hypothesis

$$e_c \sim e_{c0} + e_{c1} \cdot \Delta T_s$$

Definition

$$e_c \sim e_{c0} + e_{c1} \cdot \Delta T_s$$
, $e_{c1} \equiv CEF(Cooling\ Efficiency\ Factor)$

<u>CEFI (Cooling Efficiency Factor Index)</u> \equiv <u>CEF monthly median</u>

EXAMPLE: Spain forest - April 2017

Check out the song:

Stop the CO₂

http://stoptheCO2.com

