26 November 2024 Virtual Exchange on Artificial Intelligence for Integrated Drought Risk Management

Laia Romero¹, Jesús Peña-Izquierdo¹, David Civantos¹, Maria José Escorihuela¹ Lluis Palma², Markus Donat², Albert Soret² Gonzalo Vilella³, Mihnea Tufis³, Arjit Nandi³

A crucial need: Drought management in a changing climate.

Seasonal Context

Seasonal climate predictions cover the gap between weather forecasts and climate projections

- Probabilistic forecasts of drought 6 months ahead
- Skill in the extra-tropics is very limited
- Multidimensional implications: drought heatwaves wildfires
- Adaptation need: skillful predictions months in advance

How can we predict next season conditions if we cannot predict the weather next week

?

- Ocean holds most of the largescale predictability signal at seasonal and interannual scales
- Land holds predictability mostly at local-scale for amplifying large-scale variability

Large-scale predictors for Europe

El Niño (ENSO)

- Weak influence on Europe
 - \rightarrow Need of **additional sources** of large-scale predictability

AI for Drought

North Atlantic Oscillation (NAO)

Weak summer predictability

A global empirical system for probabilistic seasonal climate prediction based on generative AI and CMIP6 models

Lluís Palma¹, Alejandro Peraza¹, Amanda Duarte¹, David Civantos², Stefano Materia¹, Arijit Nandi³, Jesús Peña-Izquierdo², Mihnea Tufis³, Gonzalo Vilella³, Laia Romero², Albert Soret¹, and Markus Donat¹ ³Barcelona Supercomputing Center, Earth Sciences Department, Spain | ²Lobelia Earth, Barcelona, 08005, Spain | ³Eurecat Technology Center of Catalunya, Barcelona, 08005, Spain

Local-scale predictors for Europe

- Land-atmosphere feedbacks play a major role **amplifying** large-scale signal leading to **extremes**
- Soil moisture is the key variable here

Miralles et al. 2019

Only with **spring dry soil conditions** the historic **2003 summer heat-wave** can be reproduced

 \rightarrow **Initialization** of soil conditions for predicting extremes

 \rightarrow Feedbacks not captured in climate models

Can seasonal prediction be enhanced with data-driven methods?

Verification of summer prediction for **precipitation prediction**

ML-based predictions

BUT we only have 10s of years of satellite data

and need **1000s** of **observational** years **for training**!

Large-scale drivers

Local-scale drivers

Lobelia.

AI for Drought

AI4DROUGHT System Architecture

→ Climate simulations provide 1000s of year of physically consistent natural variability

→ A pixel-based model allows for 1000s of spatially scattered training samples within 10s of years of observational data

AI for Drought

Large-scale model results

- We measure our large-scale model accuracy against two benchmarks: climatology and SEAS5
- Results show skill improvement over SEAS5 in Europe, yet predictability at seasonal timescales remains very limited
- Generative approaches, including deep learning CVAEs, can improve data-driven seasonal predictions through non-linear and probabilistic modelling.

 \rightarrow In blue, areas where our large scale model performs better than climatology

 \rightarrow In blue, areas where our large scale model performs better than SEAS5 (ECMWF)

Lobelia.

AI for Drought

Local-scale model results

- We measure our local-scale model fit against observational soil moisture reanalysis •
- Results show skillful seasonal predictions using only initial conditions \rightarrow integrating soil moisture satellite observations from the past moth

::

- Soil moisture memory provides more predictability than actual precipitation and evapotranspiration (in blue)
- Soil Moisture initial conditions are essential to forecast drought anomalies at seasonal time-scales

Seasonal soil moisture predictions, input=initial conditions

Large-scale + Local-scale models Not a significant improvement integrating Fall, mean: 0.34 1.00 Winter, mean: 0.28 Spring, mean: 0.21 precipitation! Summer, mean: 0.30 $\left(\begin{array}{c} \circ \circ \\ \end{array}\right)$ 0.75 0.50 0.25 Only initial 0.00 E conditions -0.25 -0.50 -0.75 0 0 -1.00 1.00 Winter, mean: 0.27 Spring, mean: 0.23 Summer, mean: 0.30 Fall, mean: 0.36 00 0.75 0.50 0.25 Initial conditions + 0.00 E SEAS5 SPEI3 -0.25 -0.50 -0.75 -1.00 0 0 Fall, mean: 0.32 1.00 Winter, mean: 0.27 Spring, mean: 0.16 Summer, mean: 0.27 • • - 0.75 0.50 Initial conditions + - 0.25 - 0.00 E Large-scale SPEI3 -0.25 -0.50 -0.75 0 0 -1.00 11 Lobelia.

Interpretability of results

Initial conditions more important than precipitation

Precipitation more important than initial conditions \rightarrow In red, areas where AI4DROUGHT satellite-based soil moisture provide seasonal drought predictability where traditional methods have no skill

 \rightarrow Important input for an accurate soil moisture prediction product in different seasons and regions in Europe

 \rightarrow Hybrid approaches are a promising way forward in seasonal forecasts

Lobelia.

Thank you!

Laia Romero, Jesús Peña Izquierdo

and David Civantos on behalf of the

AI for Drought team

laia@lobelia.earth

www.aifordrought.com

eurecat

