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Al for Drought

A cruclal need:
Drought management
INn a changing climate.
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Extra-tropical

Seasonal Context

E B - Tropical
Tropical & S Africa
America R

" Extra-tropical

Seasonal climate predictions cover the gap between

weather forecasts and climate projections BLUE® Low skil

* Probabilistic forecasts of drought 6 months ahead

* Skill in the extra-tropics is very limited
* Multidimensional implications: drought — heatwaves — wildfires

* Adaptation need: skillful predictions months in advance
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How can we predict next season conditions If
we cannot predict the weather next week ®

e Ocean holds most of the large-

atmosphere . -
(weather) ' scale predictability signal at

___ Seasonal _ seasonal and interannual scales

predictions

e Land holds predictability mostly

Predictability

at local-scale for amplifying

large-scale variability
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Large-scale predictors for Europe

El Nifio (ENSO) North Atlantic Oscillation (NAO)
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e Weak influence on Europe e Weak summer predictability

— Need of additional sources

naf st A global empirical system for probabilistic seasonal climate
of large-scale predictability '

prediction based on generative Al and CMIP6 models
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Only with spring dry soil conditions the historic
2003 summer heat-wave can be reproduced

Local-scale predictors for Europe
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Can seasonal prediction be enhanced with data-driven methods?

Verification of summer prediction
for precipitation prediction

fairRPSS - prir - ECMWF SEASS5 vs ERAS - Seasonal Mean

Start date: 20200501 - Forecast period: months 1 to 3 - Reference penod: 1993-2016
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worse than better than
climatology climatology
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ML-based predictions

BUT we only have
10s of years of

satellite data

and need 1000s of
observational years
for training!

Large-scale drivers

Local-scale drivers
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AlI4ADROUGHT System Architecture
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— Climate simulations
provide 1000s of year of
physically consistent
natural variability

— A pixel-based model
allows for 1000s of spatially
scattered training samples
within 10s of years of
observational data
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Large-scale model results

e \We measure our large-scale model accuracy against two benchmarks: climatology and
SEASS

e Results show skill improvement over SEASS in Europe, yet predictability at seasonal
timescales remains very limited

e Generative approaches, including deep learning CVAEs, can improve data-driven seasonal

predictions through non-linear and probabilistic modelling.

Precipitation - Skill Scores 2002-2022 [ref.1981-2001]
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— In blue, areas where our large
scale model performs better than
climatology

— In blue, areas where our large
scale model performs better than
SEAS5 (ECMWEF)
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| ocal-scale model results

e We measure our local-scale model fit against observational soil moisture reanalysis

e Results show skillful seasonal predictions using only initial conditions — integrating soil moisture satellite observations from the

past moth

e Soil moisture memory provides more predictability than actual precipitation and evapotranspiration (in blue)

e Soil Moisture initial conditions are essential to forecast drought anomalies at seasonal time-scales

Winter, mean: 0.28

Seasonal soil moisture predictions, input=initial conditions

Spring, mean: 0.21 Summer, mean: 0.30 Fall, mean: 0.34

Al for Drought

— In blue, areas where our local model prediction can better
reproduce the observed seasonal soil moisture

1.00

0.75

0.50

- 0.25

-~ 0.00

- —0.25

- —0.50

-0.75

-1.00

&

Lobelia.



Large-scale + Local-scale models Not a significant
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Interpretability of results

Winter Spring Summer Autumn

Difference between coefl and coef2: -0.07

> —

Difference between coefl and coef2: -0.08 N Differarce botwoon coofl and coef2: 0.05

2R

. . .. . — In red, areas where AI4ADROUGHT satellite-based soil
Inltlal COHdlthnS more lmportant moisture provide seasonal drought predictability where

o e . traditional methods have no skill
than precipitation

— Important input for an accurate soil moisture
prediction product in different seasons and regions in

Precipitation more important than Europe

initial CODditiOIlS — Hybrid approaches are a promising way forward in
seasonal forecasts
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Al for Drought

Thank you!

Laia Romero, Jesus Pefa lzquierdo
and David Civantos on behalf of the
Al for Drought team

laia@lobelia.earth

www.aifordrought.com
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