

Virtual Exchange On Flood and Drought Management

25 April 2023

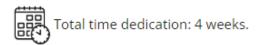
Agenda

- Welcome and short update (5 mins)
 - Drought Resilience +10 progress
 - UN Water Conference 2023
 - New online course on monitoring and early warning
 - UN Early Warning for All Initiative
- EPIC Response Framework, Greg Bowder, Lead WRM Specialist, World Bank Group (15 mins)
- EPIC Response Assessment Methodology (ERAM Tool) and Application to Assam, India, Ana Nunez Sanchez, Expert Advisor, Deltares (15 minutes)
- Managing flood and drought together an overview on practical approaches, Valentin Aich, GWP/WMO (10 minutes)
- Partners' initiatives (25 mins)
 - Antea Group
 - UK Centre for Ecology & Hydrology Wallingford
 - Vortex-IO
 - UNECE
 - Global Change Research Centre Academy of Sciences of the Czech Republic
- Q&A and discussion (10 mins)

- "Integrating Practice and Knowledge for Drought Resilience" - focus on Action
- 3.5 days including High Level Segment, potentially shared with International Drought Resilience Alliance (IDRA)
- Venue and date close to be settled
- 8 Workstreams with 2-page concept notes currently drafted (public review)
- Will include poster session
- A launch for side events will be launched soon.

N°	Workstream	Lead
1	Drought resilience and global mechanisms	UNDRR/NOAA
2	Drought risk governance: The regional, national, and local challenges	UNCCD/UNES CO
3	Drought Impact monitoring, assessment and forecasting	WMO/NDMC
4	The Need to turn drought policies into action	FAO/UNCCD
5	Ecosystems and Drought	IWMI/IUCN
6	Social Inclusion, climate justice and drought	GWP/IWMI
7	Drought Risk Finance	World Bank/FAO
8	Public-Private-Civil Society Partnerships for integrated drought risk management	WMO/GWP

- "The commitments at this Conference will propel humanity towards the water-secure future every person on the planet needs," (António Guterres)- also for flood and drought?
- YES: Flood and Drought among the most prominent topics
- APFM and IDMP present at many sessions
- UN Early Warning 4 All initiative one of the main topics
- Joint commitment of APFM/IDMP including community input
- Long to mid term impact to be seen



New IDMP online course Integrated Drought Management: Monitoring and Early Warning

https://cap-net.org/ gestion-de-la-secheresse/

https://cap-net.org/drought-management/

DHI, World Meteorological

Organisation, Global Water

Partnership, IDMP. Volta Flood and

Drought Management

Level: Introductory.

Content: readings, videos,

Certification: Attendance and

Early Warnings for All

 The UN Global Early Warning Initiative for the Implementation of Climate Adaptation

Disaster risk knowledge

Systematically collect data and undertake risk assessments

- Are the hazards and the vulnerabilities
- well known by the communities?

 What are the patterns and trends in
- · Are risk maps and data widely available?

Detection, observations, monitoring, analysis and forecasting of hazards

Develop hazard monitoring and early warning services

- Are the right parameters being monitored?
- Is there a sound scientific basis for making forecasts?
- Can accurate and timely warnings be generated?

Preparedness and response capabilities

Build national and community response capabilities

- Are response plans up to date and tested?
 Are lead appropriate and knowledge made.
- Are local capacities and knowledge made use of?
- Are people preapred and ready to react to warnings?

Warning dissemination and communication

Communicate risk information and early warnings

- Do warnings reach all of those at risk?
- Are the risks and warnings understood?
- Is the warning information clear and usable?

APFM and IDMP are part of the initiative

Today I announce the United Nations will spearhead new action to ensure every person on Earth is protected by early warning systems within five years. I have asked the World Meteorological Organization to lead this effort and to present an action plan at the next UN climate conference, later this year in Egypt.

UN Secretary-General Antonio Guterres on World Meteorological Day 23 March 2022

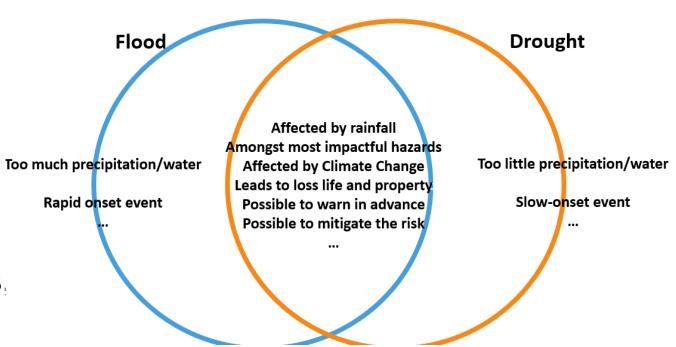
Tentative Dates for Annual Meetings in Stockholm:

APFM: 18 August AM

IDMP: 18 August PM and 19 August

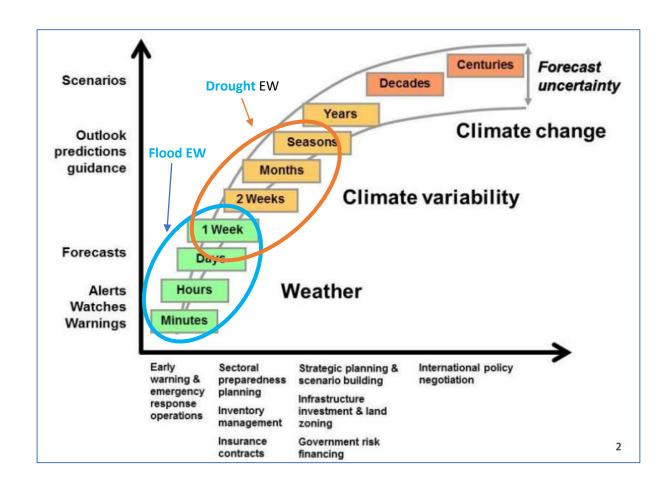
Managing flood and drought together - an overview on practical approaches

- New joint FAO, APFM, IDMP (WMO,GWP) publication to be launched soon: "Integrating flood and drought management –Practical Common Approaches"
- Complimentary to EPIC Response
- Practical Examples and case studies



Components of joint flood and drought management

- 1. Monitoring, forecasting and early warning of floods and droughts
- 2. Assessing the risks and impacts of droughts and floods
- 3. Actions for prevention, preparedness, awareness, and policy development



Monitoring, forecasting and early warning

Traditionally two different scientific disciplines:

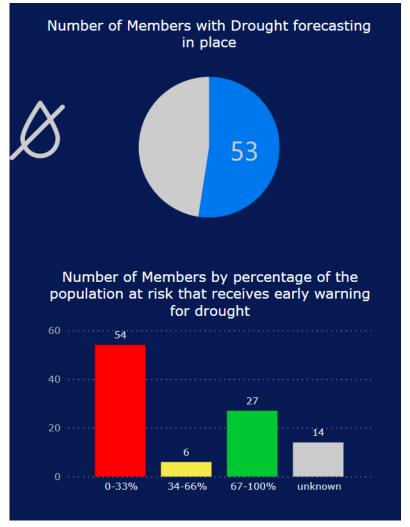
- Flood: Hydrology
- Drought: agricultural meteorology/climatology

"Short term vs mid-to long term"

- Most variables to be monitored for both hazards
- The management of both hazards profits from joint approach:
 - Water resources information for drought
 - Longer term forecast and more socioeconomic for flood
- Seamless prediction capabilities increasing
- Stakeholder engagement relevant for both

Monitoring, forecasting and early warning

Parameter/variable	Flood	Drought		
a) Continuously monitored	parameters			
Meteorological variables				
Precipitation	X	X		
Air temperature	X	X		
Potential Evapotranspiration	X	X		
(depending on formula can				
include air temperature, wind				
speed, solar radiation, etc.)				
Wind Speed	X			
Hydrological variables				
River level	X	X		
River discharge	X	X		
Ground water level	X	X		
Soil moisture content	X	X		
Reservoir/lake level	Х	X		
Snow cover/depth/snow	X	X		
water equivalent				
Glacier cover/mass	X	X		
Permafrost Active Layer	X	X		
Thickness				
Vegetation/crops				
Crop data		X		
Remotely-sensed vegetation		X		
indices (NDVI, fAPAR, etc.,				
full list on <u>Handbook of</u>				
Drought Indicators and				
Indices				
a) Static/slow dynamic parameters for setting up models for simulation and forecast				
Soil texture	Х	Х		
Land cover/land use	X	X		
Topography	X	X		



Number of Members with Riverine Flood forecasting in place Number of Members by percentage of the population at risk that receives early warning for riverine flood 403415...... 8 0-33% 34-66% 67-100% unknown

Monitoring, forecasting and early warning

Still a long way to go, but Early Warning for all initiative

Assessing the risk and impacts of droughts

RISK = HAZARD x EXPOSURE x VULNERABILITY

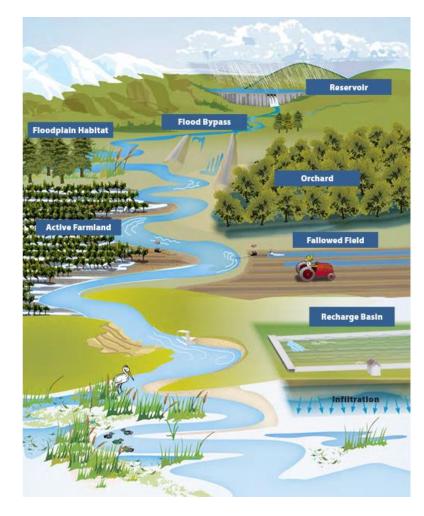
- Overlaps of flood and drought vulnerability/resilience and exposure
- Often similar information needed: age, gender, income, disability, etc.
- INFORM Risk Index developed by Joint Research Center
 - combining 54 indicators into three dimensions of risk
 - Redone on regular basis (bi-annually)
- Main challenge are the separated responsibilities in most countries
- Participatory/community approaches often consider all risks incl. flood and drought
- Big synergies in communication

Actions for prevention, preparedness and awareness

Prevention and Mitigation

Recovery

Disaster Risk Cycle holds for floods and droughts (incl. "hydro-illogical cycle")



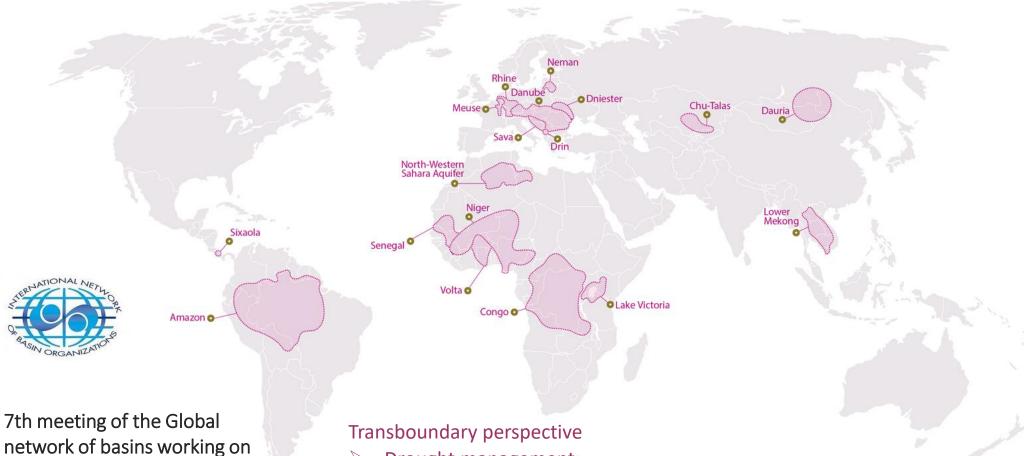
Actions for prevention, preparedness and awareness

- All measure to prevent/mitigate flood and drought hazard aim on balancing excess/lack of water on different spatial and temporal scales:
 - Reservoirs
 - Nature-based solutions on different scales (surface, subsurface aquifers and soil, land cover restauration/protection)
 - Flood-Managed Aquifer Recharge (Flood-MAR)
 - Urban water storages

Elements of Flood-MAR. California DWR 2018.

8 Recommendations

- 1. Reiteration of the benefits of integrating drought and flood management
- 2. Highlight economic benefits
- 3. Adopt a common risk management framework
- 4. Stakeholders are the key to the integrated approach they are the same stakeholders
- 5. The importance of taking a strategic or proactive approach to reduce BOTH drought and flood risks by effective planning of land and water management (Integrated Water Resources and Land Management)
- 6. Importance of managing drought and floods at the basin and sub-basin scales (across administrative boundaries) and the related benefits at local level
- 7. Identifying needs and building the capabilities in the most vulnerable communities
- 8. Future needs and challenges for successful integration of both flood and drought



climate change adaptation
(25-26 May 2023)
https://unece.org/info/Environme
ntal-Policy/Water-

Convention/events/374647

- Drought management;
- linkages between global processes on water, environment, climate and biodiversity;
- adaptation of wetlands; and
- financing.

Recent progress report

Events in 2023-2024

2023

- 25-26 May: Meeting of the Global network of basins working on climate change adaptation
- 19-21 June: Meeting of the Working Group on IWRM
- 16 October: Global workshop on surface waters and groundwaters
- 17-18 October: Meeting of the Working Group on Monitoring and Assessment
- 5-6 December: Global workshop on funding and financing transboundary water cooperation

2024

- 26-27 February: Global workshop on transboundary climate change adaptation and mitigation
- 28 February: Meeting of the Task Force on Water and Climate
- 3-5 June: Joint session of the Working Group on Integrated Water Resources Management and the Working Group on Monitoring and Assessment
- 18-19 June: Workshop on the global water conventions and international water law
- 23-25 October: Meeting of the Parties to the Water Convention (to take place in Slovenia)

Thanks for your attention!

Water Convention Secretariat contact:

Palais des Nations, Geneva, Switzerland

hanna.plotnykova@un.org – for climate change

For more information:

www.unece.org/env/water/

Clim4Cast

Clim4Cast

Central European Alliance for Increasing Climate Change Resilience to Combined Consequences of Drought, Heatwave, and Fire Weather through Regionally-Tuned Forecasting

IDMP virtual exchange | 24 April 2023

Markéta Poděbradská Global Change Research Institute, CAS

AUSTRIA Wien

CROATIA Grad Zagreb

CZECHIA Jihovýchod

GERMANY Brandenburg

POLAND Lubelskie

SLOVAKIA Bratislavský kraj

SLOVENIA Zahodna Slovenija

ERDF co-financing

CzechGlobe

Global Change Research Institute CAS

MASARYK UNIVERSITY

TU WIEN
DEPARTMENT OF
GEODESY AND
GEOINFORMATION

Institute of Soil Science and Plant Cultivation State Research Institute

ARSO METEO Slovenian Environment Agency

CLIM4CAST OBJECTIVES

- Creating a step change in the early warning system for drought, heatwaves, and fire weather (DHF) in Central Europe
 - CE platform for monitoring and prediction with a feasible implementation into established national monitoring platforms
- Estimating the effect of climate change on the DHF events and communication of the findings to public to increase their awareness of these phenomena through a transnational strategy
- Proper communication of the risk, mitigation, and response strategies to key stakeholders and the public through developed national action plans
- Building on existing and diverse partner knowledge, experience, and established network of stakeholders

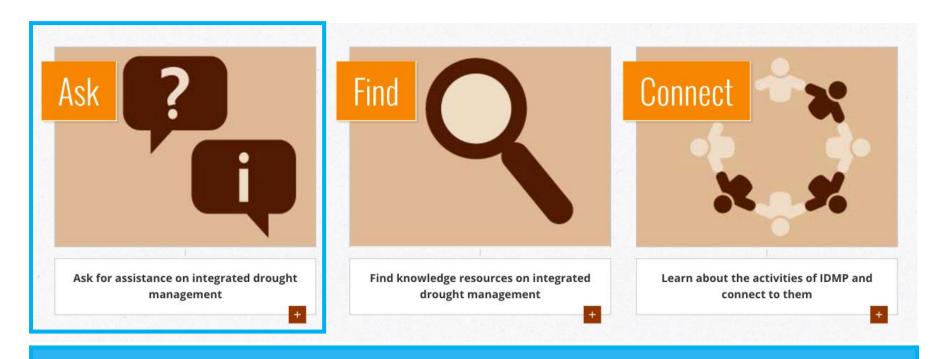
23

Would you like to have another Virtual Exchange before the Annual Meetings in August?

Please scan the QR-code or go to www.menti.com and use this code:

8701 1165

https://www.menti.com/alfbhihv7wus



Thank you!

www.DroughtManagement.info

www.FloodManagement.info

